以前学习的做的计算几何部分笔记,现在整理一下发出来
Sorted & Add By: MFDY
From: kuangbin
二维几何
预备部分
const double eps = 1e-8;
const double inf = 1e20;
const double pi = acos(-1.0);
const int maxp = 1010;
//`Compares a double to zero`
int sgn(double x) {
if(fabs(x) < eps) return 0;
if(x < 0) return -1;
else return 1;
}
//square of a double
inline double sqr(double x){return x*x;}
第一部分—点
- point() - Empty constructor
- point(double _x,double _y) - constructor
- input() - double input
- output() - %.2f output
- operator == - 比较x和y
- operator < - 先比x,后比y
- operator - - x,y分别减; 从A点指向B点的矢量AB可用B-A来表示
- operator ^ - 叉积:求两个矢量形成的面积;求面积,求顺逆时针方向,判断是否在半平面上
因为a*b为有向面积,可正可负,a逆时针旋转小于180为正 - operator * - 矢量的点积,求投影长度
- len() - gives length from origin
- len2() - gives square of length from origin
- distance(point p) - gives distance from p
- operator + point b - returns new point after adding curresponging x and y
- operator * double k - returns new point after multiplieing x and y by k
- operator / double k - returns new point after divideing x and y by k
- rad(point a,point b)- 计算pa和pb的夹角
- trunc(double r) - 更改为长度为r的向量
- rotleft() - 逆时针旋转90°
- rotright() - 顺时针旋转90°
- rotate(point p,double angle) - 绕p点逆时针旋转angle°
struct Point{
double x, y;
Point(){}
Point(double _x, double _y){
x = _x;
y = _y;
}
void input(){
scanf("%lf%lf", &x, &y);
}
void output(){
printf("%.2f %.2f\n", x, y);
}
bool operator == (Point b) const {
return sgn(x - b.x) == 0 && sgn(y - b.y) == 0;
}
bool operator < (Point b) const {
return sgn(x-b.x) == 0 ? sgn(y-b.y) < 0 : x < b.x;
}
Point operator -(const Point &b)const{
return Point(x-b.x,y-b.y);
}
//叉积
double operator ^(const Point &b)const{
return x*b.y - y*b.x;
}
//点积
double operator *(const Point &b)const{
return x*b.x + y*b.y;
}
//返回长度
double len(){
return hypot(x,y);//库函数
}
//返回长度的平方
double len2(){
return x*x + y*y;
}
//返回两点的距离
double distance(Point p){
return hypot(x-p.x,y-p.y);
}
Point operator +(const Point &b)const{
return Point(x+b.x,y+b.y);
}
Point operator *(const double &k)const{
return Point(x*k,y*k);
}
Point operator /(const double &k)const{
return Point(x/k,y/k);
}
//`计算pa 和 pb 的夹角`
//`就是求这个点看a,b 所成的夹角`
//`测试 LightOJ1203`
double rad(Point a,Point b){
Point p = *this;
return fabs(atan2( fabs((a-p)^(b-p)),(a-p)*(b-p) ));
}
//`化为长度为r的向量`
Point trunc(double r){
double l = len();
if(!sgn(l))return *this;
r /= l;
return Point(x*r,y*r);
}
//`逆时针旋转90度`
Point rotleft(){
return Point(-y,x);
}
//`顺时针旋转90度`
Point rotright() {
return Point(y,-x);
}
//`绕着p点逆时针旋转angle`
Point rotate(Point p,double angle){
Point v = (*this) - p;
double c = cos(angle), s = sin(angle);
return Point(p.x + v.x*c - v.y*s,p.y + v.x*s + v.y*c);
}
};
第二部分—线
- Stores two points
- line() - Empty constructor
- line(point _s,point _e) - line through _s and _e
- operator == - checks if two points are same
- line(point p,double angle) - 根据一个点和倾斜角angle确定直线,0≤angle<pi
- line(double a,double b,double c) - ax + by + c = 0 转化
- input() - inputs s and e
- adjust() - orders in such a way that s < e
- length() - 求线段长度
- angle() - 返回直线倾斜角
- relation(point p) - 点和直线关系(向量)
- 1 点在直线左侧
- 2 点在直线右侧
- 3 点在直线上
- xmult(Point p) - 点和直线叉积, 用于判断点和直线关系(优先选择!!!)
- pointonseg(double p) - 判断点是否在线段上
- parallel(line v) - 判断两向量是否平行
- segcrossseg(line v) - 两线段相交判断
- returns 0 不相交
- returns 1 非规范相交
- returns 2 规范相交
- linecrossseg(line v) - 直线和线段相交判断,同上
- linecrossline(line v) - 两直线关系
- 0 平行
- 1 重合
- 2 相交
- crosspoint(line v) -求两直线的交点,要保证两直线不平行或重合
- dispointtoline(point p) - 点到直线的距离
- dispointtoseg(point p) - 点到线段的距离
- dissegtoseg(line v) - 返回线段到线段的距离,前提是两线段不相交,相交距离就是 0 了
- lineprog(point p) - 返回点 p 在直线上的投影
- symmetrypoint(point p) - 返回点 p 关于直线的对称点
struct Line{
Point s,e;
Line(){}
Line(Point _s,Point _e){
s = _s;
e = _e;
}
bool operator ==(Line v){
return (s == v.s)&&(e == v.e);
}
//`根据一个点和倾斜角angle确定直线,0<=angle<pi`
Line(Point p,double angle){
s = p;
if(sgn(angle-pi/2) == 0){
e = (s + Point(0,1));
}
else{
e = (s + Point(1,tan(angle)));
}
}
//ax+by+c=0
Line(double a,double b,double c){
if(sgn(a) == 0){
s = Point(0,-c/b);
e = Point(1,-c/b);
}
else if(sgn(b) == 0){
s = Point(-c/a,0);
e = Point(-c/a,1);
}
else{
s = Point(0,-c/b);
e = Point(1,(-c-a)/b);
}
}
void input(){
s.input();
e.input();
}
void adjust(){
if(e < s)swap(s,e);
}
//求线段长度
double length(){
return s.distance(e);
}
//`返回直线倾斜角 0<=angle<pi`
double angle(){
double k = atan2(e.y-s.y,e.x-s.x);
if(sgn(k) < 0)k += pi;
if(sgn(k-pi) == 0)k -= pi;
return k;
}
//点和直线关系(向量)
//1 在左侧
//2 在右侧
//3 在直线上
int relation(Point p){
int c = sgn((p-s)^(e-s));
if(c < 0)return 1;
else if(c > 0)return 2;
else return 3;
}
// 点和直线的叉积,也可用于判断点和直线关系(优选)
// return < 0 点在直线左侧, 即点在直线的逆时针方向
// return > 0 点在直线右侧, 即点在直线的顺时针方向
// return == 0 点在直线上
int xmult(Point p) {
return (s - p) ^ (e - p);
}
// 点在线段上的判断
bool pointonseg(Point p){
return sgn((p-s)^(e-s)) == 0 && sgn((p-s)*(p-e)) <= 0;
}
//`两向量平行(对应直线平行或重合)`
bool parallel(Line v){
return sgn((e-s)^(v.e-v.s)) == 0;
}
//`两线段相交判断`
//`2 规范相交`
//`1 非规范相交`
//`0 不相交`
int segcrossseg(Line v){
int d1 = sgn((e-s)^(v.s-s));
int d2 = sgn((e-s)^(v.e-s));
int d3 = sgn((v.e-v.s)^(s-v.s));
int d4 = sgn((v.e-v.s)^(e-v.s));
if( (d1^d2)==-2 && (d3^d4)==-2 )return 2;
return (d1==0 && sgn((v.s-s)*(v.s-e))<=0) ||
(d2==0 && sgn((v.e-s)*(v.e-e))<=0) ||
(d3==0 && sgn((s-v.s)*(s-v.e))<=0) ||
(d4==0 && sgn((e-v.s)*(e-v.e))<=0);
}
//`直线和线段相交判断`
//`-*this line -v seg`
//`2 规范相交`
//`1 非规范相交`
//`0 不相交`
int linecrossseg(Line v){
int d1 = sgn((e-s)^(v.s-s));
int d2 = sgn((e-s)^(v.e-s));
if((d1^d2)==-2) return 2;
return (d1==0||d2==0);
}
//`两直线关系`
//`0 平行`
//`1 重合`
//`2 相交`
int linecrossline(Line v){
if((*this).parallel(v))
return v.relation(s)==3;
return 2;
}
//`求两直线的交点`
//`要保证两直线不平行或重合`
Point crosspoint(Line v){
double a1 = (v.e-v.s)^(s-v.s);
double a2 = (v.e-v.s)^(e-v.s);
return Point((s.x*a2-e.x*a1)/(a2-a1),(s.y*a2-e.y*a1)/(a2-a1));
}
//点到直线的距离
double dispointtoline(Point p){
return fabs((p-s)^(e-s))/length();
}
//点到线段的距离
double dispointtoseg(Point p){
if(sgn((p-s)*(e-s))<0 || sgn((p-e)*(s-e))<0)
return min(p.distance(s),p.distance(e));
return dispointtoline(p);
}
//`返回线段到线段的距离`
//`前提是两线段不相交,相交距离就是0了`
double dissegtoseg(Line v){
return min(min(dispointtoseg(v.s),dispointtoseg(v.e)),min(v.dispointtoseg(s),v.dispointtoseg(e)));
}
//`返回点p在直线上的投影`
Point lineprog(Point p){
return s + ( ((e-s)*((e-s)*(p-s)))/((e-s).len2()) );
}
//`返回点p关于直线的对称点`
Point symmetrypoint(Point p){
Point q = lineprog(p);
return Point(2*q.x-p.x,2*q.y-p.y);
}
};
第三部分—圆
- circle(Point a,Point b,Point c) - 三角形的外接圆
- circle(Point a,Point b,Point c,bool t) - 三角形的内切圆
- input() - 输入
- output() - 输出
- area() - 面积
- circumference() - 周长
- relation() - 点和圆的关系
- 圆外
- 圆上
- 圆内
- relationseg(Line v) - 线段和圆的关系
- relationline(Line v) - 直线和圆的关系
- relationcircle(circle v) - 两圆的关系
- pointcrosscircle(circle v,Point &p1,Point &p2) - 两个圆的交点个数
- pointcrossline(Line v,Point &p1,Point &p2) - 求直线和圆的交点,返回交点个数
- gercircle() - 得到过a,b两点,半径为r1的两个圆
- getcircle() - 得到与直线u相切,过点q,半径为r1的圆
- getcircle() - 同时与直线u,v相切,半径为r1的圆
- getcircle() - 同时与不相交圆cx,cy相切,半径为r1的圆
- tangentline(Point q,Line &u,Line &v) - 过一点作圆的切线(先判断点和圆的关系)
- areacircle(circle v) - 求两圆相交的面积
- areatriangle(Point a,Point b) - 求圆和三角形pab的相交面积
struct circle{
Point p;//圆心
double r;//半径
circle(){}
circle(Point _p,double _r){
p = _p;
r = _r;
}
circle(double x,double y,double _r){
p = Point(x,y);
r = _r;
}
//`三角形的外接圆`
//`需要Point的+ / rotate() 以及Line的crosspoint()`
//`利用两条边的中垂线得到圆心`
//`测试:UVA12304`
circle(Point a,Point b,Point c){
Line u = Line((a+b)/2,((a+b)/2)+((b-a).rotleft()));
Line v = Line((b+c)/2,((b+c)/2)+((c-b).rotleft()));
p = u.crosspoint(v);
r = p.distance(a);
}
//`三角形的内切圆`
//`参数bool t没有作用,只是为了和上面外接圆函数区别`
//`测试:UVA12304`
circle(Point a,Point b,Point c,bool t){
Line u,v;
double m = atan2(b.y-a.y,b.x-a.x), n = atan2(c.y-a.y,c.x-a.x);
u.s = a;
u.e = u.s + Point(cos((n+m)/2),sin((n+m)/2));
v.s = b;
m = atan2(a.y-b.y,a.x-b.x) , n = atan2(c.y-b.y,c.x-b.x);
v.e = v.s + Point(cos((n+m)/2),sin((n+m)/2));
p = u.crosspoint(v);
r = Line(a,b).dispointtoseg(p);
}
//输入
void input(){
p.input();
scanf("%lf",&r);
}
//输出
void output(){
printf("%.2lf %.2lf %.2lf\n",p.x,p.y,r);
}
bool operator == (circle v){
return (p==v.p) && sgn(r-v.r)==0;
}
bool operator < (circle v)const{
return ((p<v.p)||((p==v.p)&&sgn(r-v.r)<0));
}
//面积
double area(){
return pi*r*r;
}
//周长
double circumference(){
return 2*pi*r;
}
//`点和圆的关系`
//`0 圆外`
//`1 圆上`
//`2 圆内`
int relation(Point b){
double dst = b.distance(p);
if(sgn(dst-r) < 0)return 2;
else if(sgn(dst-r)==0)return 1;
return 0;
}
//`线段和圆的关系`
//`比较的是圆心到线段的距离和半径的关系`
int relationseg(Line v){
double dst = v.dispointtoseg(p);
if(sgn(dst-r) < 0)return 2;
else if(sgn(dst-r) == 0)return 1;
return 0;
}
//`直线和圆的关系`
//`比较的是圆心到直线的距离和半径的关系`
int relationline(Line v){
double dst = v.dispointtoline(p);
if(sgn(dst-r) < 0)return 2;
else if(sgn(dst-r) == 0)return 1;
return 0;
}
//`两圆的关系`
//`5 相离`
//`4 外切`
//`3 相交`
//`2 内切`
//`1 内含`
//`需要Point的distance`
//`测试:UVA12304`
int relationcircle(circle v){
double d = p.distance(v.p);
if(sgn(d-r-v.r) > 0) return 5;
if(sgn(d-r-v.r) == 0) return 4;
double l = fabs(r - v.r);
if(sgn(d-r-v.r)<0 && sgn(d-l)>0) return 3;
if(sgn(d-l)==0) return 2;
if(sgn(d-l)<0) return 1;
}
//`求两个圆的交点,返回0表示没有交点,返回1是一个交点,2是两个交点`
//`需要relationcircle`
//`测试:UVA12304`
int pointcrosscircle(circle v,Point &p1,Point &p2){
int rel = relationcircle(v);
if(rel == 1 || rel == 5)return 0;
double d = p.distance(v.p);
double l = (d*d+r*r-v.r*v.r)/(2*d);
double h = sqrt(r*r-l*l);
Point tmp = p + (v.p-p).trunc(l);
p1 = tmp + ((v.p-p).rotleft().trunc(h));
p2 = tmp + ((v.p-p).rotright().trunc(h));
if(rel == 2 || rel == 4)
return 1;
return 2;
}
//`求直线和圆的交点,返回交点个数`
int pointcrossline(Line v,Point &p1,Point &p2){
if(!(*this).relationline(v))return 0;
Point a = v.lineprog(p);
double d = v.dispointtoline(p);
d = sqrt(r*r-d*d);
if(sgn(d) == 0){
p1 = a;
p2 = a;
return 1;
}
p1 = a + (v.e-v.s).trunc(d);
p2 = a - (v.e-v.s).trunc(d);
return 2;
}
//`得到过a,b两点,半径为r1的两个圆`
int gercircle(Point a,Point b,double r1,circle &c1,circle &c2){
circle x(a,r1),y(b,r1);
int t = x.pointcrosscircle(y,c1.p,c2.p);
if(!t)return 0;
c1.r = c2.r = r;
return t;
}
//`得到与直线u相切,过点q,半径为r1的圆`
//`测试:UVA12304`
int getcircle(Line u,Point q,double r1,circle &c1,circle &c2){
double dis = u.dispointtoline(q);
if(sgn(dis-r1*2)>0)return 0;
if(sgn(dis) == 0){
c1.p = q + ((u.e-u.s).rotleft().trunc(r1));
c2.p = q + ((u.e-u.s).rotright().trunc(r1));
c1.r = c2.r = r1;
return 2;
}
Line u1 = Line((u.s + (u.e-u.s).rotleft().trunc(r1)),(u.e + (u.e-u.s).rotleft().trunc(r1)));
Line u2 = Line((u.s + (u.e-u.s).rotright().trunc(r1)),(u.e + (u.e-u.s).rotright().trunc(r1)));
circle cc = circle(q,r1);
Point p1,p2;
if(!cc.pointcrossline(u1,p1,p2))cc.pointcrossline(u2,p1,p2);
c1 = circle(p1,r1);
if(p1 == p2){
c2 = c1;
return 1;
}
c2 = circle(p2,r1);
return 2;
}
//`同时与直线u,v相切,半径为r1的圆`
//`测试:UVA12304`
int getcircle(Line u,Line v,double r1,circle &c1,circle &c2,circle &c3,circle &c4){
if(u.parallel(v))return 0;//两直线平行
Line u1 = Line(u.s + (u.e-u.s).rotleft().trunc(r1),u.e + (u.e-u.s).rotleft().trunc(r1));
Line u2 = Line(u.s + (u.e-u.s).rotright().trunc(r1),u.e + (u.e-u.s).rotright().trunc(r1));
Line v1 = Line(v.s + (v.e-v.s).rotleft().trunc(r1),v.e + (v.e-v.s).rotleft().trunc(r1));
Line v2 = Line(v.s + (v.e-v.s).rotright().trunc(r1),v.e + (v.e-v.s).rotright().trunc(r1));
c1.r = c2.r = c3.r = c4.r = r1;
c1.p = u1.crosspoint(v1);
c2.p = u1.crosspoint(v2);
c3.p = u2.crosspoint(v1);
c4.p = u2.crosspoint(v2);
return 4;
}
//`同时与不相交圆cx,cy相切,半径为r1的圆`
//`测试:UVA12304`
int getcircle(circle cx,circle cy,double r1,circle &c1,circle &c2){
circle x(cx.p,r1+cx.r),y(cy.p,r1+cy.r);
int t = x.pointcrosscircle(y,c1.p,c2.p);
if(!t)return 0;
c1.r = c2.r = r1;
return t;
}
//`过一点作圆的切线(先判断点和圆的关系)`
//`测试:UVA12304`
int tangentline(Point q,Line &u,Line &v){
int x = relation(q);
if(x == 2)return 0;
if(x == 1){
u = Line(q,q + (q-p).rotleft());
v = u;
return 1;
}
double d = p.distance(q);
double l = r*r/d;
double h = sqrt(r*r-l*l);
u = Line(q,p + ((q-p).trunc(l) + (q-p).rotleft().trunc(h)));
v = Line(q,p + ((q-p).trunc(l) + (q-p).rotright().trunc(h)));
return 2;
}
//`求两圆相交的面积`
double areacircle(circle v){
int rel = relationcircle(v);
if(rel >= 4)return 0.0;
if(rel <= 2)return min(area(),v.area());
double d = p.distance(v.p);
double hf = (r+v.r+d)/2.0;
double ss = 2*sqrt(hf*(hf-r)*(hf-v.r)*(hf-d));
double a1 = acos((r*r+d*d-v.r*v.r)/(2.0*r*d));
a1 = a1*r*r;
double a2 = acos((v.r*v.r+d*d-r*r)/(2.0*v.r*d));
a2 = a2*v.r*v.r;
return a1+a2-ss;
}
//`求圆和三角形pab的相交面积`
//`测试:POJ3675 HDU3982 HDU2892`
double areatriangle(Point a,Point b){
if(sgn((p-a)^(p-b)) == 0)return 0.0;
Point q[5];
int len = 0;
q[len++] = a;
Line l(a,b);
Point p1,p2;
if(pointcrossline(l,q[1],q[2])==2){
if(sgn((a-q[1])*(b-q[1]))<0)q[len++] = q[1];
if(sgn((a-q[2])*(b-q[2]))<0)q[len++] = q[2];
}
q[len++] = b;
if(len == 4 && sgn((q[0]-q[1])*(q[2]-q[1]))>0)swap(q[1],q[2]);
double res = 0;
for(int i = 0;i < len-1;i++){
if(relation(q[i])==0||relation(q[i+1])==0){
double arg = p.rad(q[i],q[i+1]);
res += r*r*arg/2.0;
}
else{
res += fabs((q[i]-p)^(q[i+1]-p))/2.0;
}
}
return res;
}
};
第四部分—多边形
- n,p line l for each side
- input(int _n) - 输入一个n边形
- add(point q) - 在列表末尾添加一个点
- getline() - populates line array
- cmp - comparision in convex_hull order
- norm() - 进行极角排序,首先需要找到最左下角的点,需要重载号好point的 < 操作符
- getconvex(polygon &convex) - 得到凸包
注意如果有影响,要特判下所有点共点,或者共线的特殊情况 - Graham(polygon &convex) - 得到凸包的另外一种方法
- isconvex() - 判断是不是凸的
- relationpoint(point q) - 判断点和任意多边形的关系
- 3 点上 2 边上
- 1 内部 0 外部
- convexcut(line u,polygon &po) - 直线u切割凸多边形左侧,注意直线方向
- gercircumference() - returns 周长 //测试 LightOJ1239
- getarea() - returns 面积
- getdir() - returns 方向:0表示顺时针, 1表示逆时针
- getbarycentre() - returns 重心
- areacircle(circle c) - 多边形和圆交的面积
- relationcircle(circle c) - 多边形和圆关系
- 2 圆完全在多边形内
- 1 圆在多边形里面,碰到了多边形边界
- 0 其它
struct polygon{
int n;
Point p[maxp];
Line l[maxp];
void input(int _n){
n = _n;
for(int i = 0;i < n;i++)
p[i].input();
}
void add(Point q){
p[n++] = q;
}
void getline(){
for(int i = 0;i < n;i++){
l[i] = Line(p[i],p[(i+1)%n]);
}
}
struct cmp{
Point p;
cmp(const Point &p0){p = p0;}
bool operator()(const Point &aa,const Point &bb){
Point a = aa, b = bb;
int d = sgn((a-p)^(b-p));
if(d == 0){
return sgn(a.distance(p)-b.distance(p)) < 0;
}
return d > 0;
}
};
//`进行极角排序`
//`首先需要找到最左下角的点`
//`需要重载号好Point的 < 操作符(min函数要用) `
void norm(){
Point mi = p[0];
for(int i = 1;i < n;i++)mi = min(mi,p[i]);
sort(p,p+n,cmp(mi));
}
//`得到凸包`
//`得到的凸包里面的点编号是0$\sim$n-1的`
//`两种凸包的方法`
//`注意如果有影响,要特判下所有点共点,或者共线的特殊情况`
//`测试 LightOJ1203 LightOJ1239`
void getconvex(polygon &convex){
sort(p,p+n);
convex.n = n;
for(int i = 0;i < min(n,2);i++){
convex.p[i] = p[i];
}
if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n--;//特判
if(n <= 2)return;
int &top = convex.n;
top = 1;
for(int i = 2;i < n;i++){
while(top && sgn((convex.p[top]-p[i])^(convex.p[top-1]-p[i])) <= 0)
top--;
convex.p[++top] = p[i];
}
int temp = top;
convex.p[++top] = p[n-2];
for(int i = n-3;i >= 0;i--){
while(top != temp && sgn((convex.p[top]-p[i])^(convex.p[top-1]-p[i])) <= 0)
top--;
convex.p[++top] = p[i];
}
if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n--;//特判
convex.norm();//`原来得到的是顺时针的点,排序后逆时针`
}
//`得到凸包的另外一种方法`
//`测试 LightOJ1203 LightOJ1239`
void Graham(polygon &convex){
norm();
int &top = convex.n;
top = 0;
if(n == 1){
top = 1;
convex.p[0] = p[0];
return;
}
if(n == 2){
top = 2;
convex.p[0] = p[0];
convex.p[1] = p[1];
if(convex.p[0] == convex.p[1])top--;
return;
}
convex.p[0] = p[0];
convex.p[1] = p[1];
top = 2;
for(int i = 2;i < n;i++){
while( top > 1 && sgn((convex.p[top-1]-convex.p[top-2])^(p[i]-convex.p[top-2])) <= 0 )
top--;
convex.p[top++] = p[i];
}
if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n--;//特判
}
//`判断是不是凸的`
bool isconvex() {
bool s[3];
memset(s, false, sizeof(s));
for(int i = 0;i < n;i++){
int j = (i+1)%n;
int k = (j+1)%n;
s[sgn((p[j]-p[i])^(p[k]-p[i]))+1] = true;
if(s[0] && s[2])return false;
}
return true;
}
//`判断点和任意多边形的关系`
//` 3 点上`
//` 2 边上`
//` 1 内部`
//` 0 外部`
int relationpoint(Point q){
for(int i = 0;i < n;i++){
if(p[i] == q)return 3;
}
getline();
for(int i = 0;i < n;i++){
if(l[i].pointonseg(q))return 2;
}
int cnt = 0;
for(int i = 0;i < n;i++){
int j = (i+1)%n;
int k = sgn((q-p[j])^(p[i]-p[j]));
int u = sgn(p[i].y-q.y);
int v = sgn(p[j].y-q.y);
if(k > 0 && u < 0 && v >= 0)cnt++;
if(k < 0 && v < 0 && u >= 0)cnt--;
}
return cnt != 0;
}
//`直线u切割凸多边形左侧`
//`注意直线方向`
//`测试:HDU3982`
void convexcut(Line u,polygon &po){
int &top = po.n;//注意引用
top = 0;
for(int i = 0;i < n;i++){
int d1 = sgn((u.e-u.s)^(p[i]-u.s));
int d2 = sgn((u.e-u.s)^(p[(i+1)%n]-u.s));
if(d1 >= 0)po.p[top++] = p[i];
if(d1*d2 < 0)po.p[top++] = u.crosspoint(Line(p[i],p[(i+1)%n]));
}
}
//`得到周长`
//`测试 LightOJ1239`
double getcircumference(){
double sum = 0;
for(int i = 0;i < n;i++){
sum += p[i].distance(p[(i+1)%n]);
}
return sum;
}
//`得到面积`
double getarea(){
double sum = 0;
for(int i = 0;i < n;i++){
sum += (p[i]^p[(i+1)%n]);
}
return fabs(sum)/2;
}
//`得到方向`
//` 1 表示逆时针,0表示顺时针`
bool getdir(){
double sum = 0;
for(int i = 0;i < n;i++)
sum += (p[i]^p[(i+1)%n]);
if(sgn(sum) > 0)return 1;
return 0;
}
//`得到重心`
Point getbarycentre(){
Point ret(0,0);
double area = 0;
for(int i = 1;i < n-1;i++){
double tmp = (p[i]-p[0])^(p[i+1]-p[0]);
if(sgn(tmp) == 0)continue;
area += tmp;
ret.x += (p[0].x+p[i].x+p[i+1].x)/3*tmp;
ret.y += (p[0].y+p[i].y+p[i+1].y)/3*tmp;
}
if(sgn(area)) ret = ret/area;
return ret;
}
//`多边形和圆交的面积`
//`测试:POJ3675 HDU3982 HDU2892`
double areacircle(circle c){
double ans = 0;
for(int i = 0;i < n;i++){
int j = (i+1)%n;
if(sgn( (p[j]-c.p)^(p[i]-c.p) ) >= 0)
ans += c.areatriangle(p[i],p[j]);
else ans -= c.areatriangle(p[i],p[j]);
}
return fabs(ans);
}
//`多边形和圆关系`
//` 2 圆完全在多边形内`
//` 1 圆在多边形里面,碰到了多边形边界`
//` 0 其它`
int relationcircle(circle c){
getline();
int x = 2;
if(relationpoint(c.p) != 1)return 0;//圆心不在内部
for(int i = 0;i < n;i++){
if(c.relationseg(l[i])==2)return 0;
if(c.relationseg(l[i])==1)x = 1;
}
return x;
}
};
其他
//`AB X AC`
double cross(Point A,Point B,Point C){
return (B-A)^(C-A);
}
//`AB*AC`
double dot(Point A,Point B,Point C){
return (B-A)*(C-A);
}
最小矩形面积覆盖
//` A 必须是凸包(而且是逆时针顺序)`
//` 测试 UVA 10173`
double minRectangleCover(polygon A){
//`要特判A.n < 3的情况`
if(A.n < 3)return 0.0;
A.p[A.n] = A.p[0];
double ans = -1;
int r = 1, p = 1, q;
for(int i = 0;i < A.n;i++){
//`卡出离边A.p[i] - A.p[i+1]最远的点`
while( sgn( cross(A.p[i],A.p[i+1],A.p[r+1]) - cross(A.p[i],A.p[i+1],A.p[r]) ) >= 0 )
r = (r+1)%A.n;
//`卡出A.p[i] - A.p[i+1]方向上正向n最远的点`
while(sgn( dot(A.p[i],A.p[i+1],A.p[p+1]) - dot(A.p[i],A.p[i+1],A.p[p]) ) >= 0 )
p = (p+1)%A.n;
if(i == 0)q = p;
//`卡出A.p[i] - A.p[i+1]方向上负向最远的点`
while(sgn(dot(A.p[i],A.p[i+1],A.p[q+1]) - dot(A.p[i],A.p[i+1],A.p[q])) <= 0)
q = (q+1)%A.n;
double d = (A.p[i] - A.p[i+1]).len2();
double tmp = cross(A.p[i],A.p[i+1],A.p[r]) *
(dot(A.p[i],A.p[i+1],A.p[p]) - dot(A.p[i],A.p[i+1],A.p[q]))/d;
if(ans < 0 || ans > tmp)ans = tmp;
}
return ans;
}
直线切凸多边形
//`多边形是逆时针的,在q1q2的左侧`
//`测试:HDU3982`
vector<Point> convexCut(const vector<Point> &ps,Point q1,Point q2){
vector<Point>qs;
int n = ps.size();
for(int i = 0;i < n;i++){
Point p1 = ps[i], p2 = ps[(i+1)%n];
int d1 = sgn((q2-q1)^(p1-q1)), d2 = sgn((q2-q1)^(p2-q1));
if(d1 >= 0)
qs.push_back(p1);
if(d1 * d2 < 0)
qs.push_back(Line(p1,p2).crosspoint(Line(q1,q2)));
}
return qs;
}
半平面交
//`测试 POJ3335 POJ1474 POJ1279`
//***************************
struct halfplane:public Line{
double angle;
halfplane(){}
//`表示向量s->e逆时针(左侧)的半平面`
halfplane(Point _s,Point _e){
s = _s;
e = _e;
}
halfplane(Line v){
s = v.s;
e = v.e;
}
void calcangle(){
angle = atan2(e.y-s.y,e.x-s.x);
}
bool operator <(const halfplane &b)const{
return angle < b.angle;
}
};
struct halfplanes{
int n;
halfplane hp[maxp];
Point p[maxp];
int que[maxp];
int st,ed;
void push(halfplane tmp){
hp[n++] = tmp;
}
//去重
void unique(){
int m = 1;
for(int i = 1;i < n;i++){
if(sgn(hp[i].angle-hp[i-1].angle) != 0)
hp[m++] = hp[i];
else if(sgn( (hp[m-1].e-hp[m-1].s)^(hp[i].s-hp[m-1].s) ) > 0)
hp[m-1] = hp[i];
}
n = m;
}
bool halfplaneinsert(){
for(int i = 0;i < n;i++)hp[i].calcangle();
sort(hp,hp+n);
unique();
que[st=0] = 0;
que[ed=1] = 1;
p[1] = hp[0].crosspoint(hp[1]);
for(int i = 2;i < n;i++){
while(st<ed && sgn((hp[i].e-hp[i].s)^(p[ed]-hp[i].s))<0)ed--;
while(st<ed && sgn((hp[i].e-hp[i].s)^(p[st+1]-hp[i].s))<0)st++;
que[++ed] = i;
if(hp[i].parallel(hp[que[ed-1]]))return false;
p[ed]=hp[i].crosspoint(hp[que[ed-1]]);
}
while(st<ed && sgn((hp[que[st]].e-hp[que[st]].s)^(p[ed]-hp[que[st]].s))<0)ed--;
while(st<ed && sgn((hp[que[ed]].e-hp[que[ed]].s)^(p[st+1]-hp[que[ed]].s))<0)st++;
if(st+1>=ed)return false;
return true;
}
//`得到最后半平面交得到的凸多边形`
//`需要先调用halfplaneinsert() 且返回true`
void getconvex(polygon &con){
p[st] = hp[que[st]].crosspoint(hp[que[ed]]);
con.n = ed-st+1;
for(int j = st,i = 0;j <= ed;i++,j++)
con.p[i] = p[j];
}
};
const int maxn = 1010;
struct circles{
circle c[maxn];
double ans[maxn];//`ans[i]表示被覆盖了i次的面积`
double pre[maxn];
int n;
circles(){}
void add(circle cc){
c[n++] = cc;
}
//`x包含在y中`
bool inner(circle x,circle y){
if(x.relationcircle(y) != 1)return 0;
return sgn(x.r-y.r)<=0?1:0;
}
//圆的面积并去掉内含的圆
void init_or(){
bool mark[maxn] = {0};
int i,j,k=0;
for(i = 0;i < n;i++){
for(j = 0;j < n;j++)
if(i != j && !mark[j]){
if( (c[i]==c[j])||inner(c[i],c[j]) )break;
}
if(j < n)mark[i] = 1;
}
for(i = 0;i < n;i++)
if(!mark[i])
c[k++] = c[i];
n = k;
}
//`圆的面积交去掉内含的圆`
void init_add(){
int i,j,k;
bool mark[maxn] = {0};
for(i = 0;i < n;i++){
for(j = 0;j < n;j++)
if(i != j && !mark[j]){
if( (c[i]==c[j])||inner(c[j],c[i]) )break;
}
if(j < n)mark[i] = 1;
}
for(i = 0;i < n;i++)
if(!mark[i])
c[k++] = c[i];
n = k;
}
//`半径为r的圆,弧度为th对应的弓形的面积`
double areaarc(double th,double r){
return 0.5*r*r*(th-sin(th));
}
//`测试SPOJVCIRCLES SPOJCIRUT`
//`SPOJVCIRCLES求n个圆并的面积,需要加上init\_or()去掉重复圆(否则WA)`
//`SPOJCIRUT 是求被覆盖k次的面积,不能加init\_or()`
//`对于求覆盖多少次面积的问题,不能解决相同圆,而且不能init\_or()`
//`求多圆面积并,需要init\_or,其中一个目的就是去掉相同圆`
void getarea(){
memset(ans,0,sizeof(ans));
vector<pair<double,int> >v;
for(int i = 0;i < n;i++){
v.clear();
v.push_back(make_pair(-pi,1));
v.push_back(make_pair(pi,-1));
for(int j = 0;j < n;j++)
if(i != j){
Point q = (c[j].p - c[i].p);
double ab = q.len(),ac = c[i].r, bc = c[j].r;
if(sgn(ab+ac-bc)<=0){
v.push_back(make_pair(-pi,1));
v.push_back(make_pair(pi,-1));
continue;
}
if(sgn(ab+bc-ac)<=0)continue;
if(sgn(ab-ac-bc)>0)continue;
double th = atan2(q.y,q.x), fai = acos((ac*ac+ab*ab-bc*bc)/(2.0*ac*ab));
double a0 = th-fai;
if(sgn(a0+pi)<0)a0+=2*pi;
double a1 = th+fai;
if(sgn(a1-pi)>0)a1-=2*pi;
if(sgn(a0-a1)>0){
v.push_back(make_pair(a0,1));
v.push_back(make_pair(pi,-1));
v.push_back(make_pair(-pi,1));
v.push_back(make_pair(a1,-1));
}
else{
v.push_back(make_pair(a0,1));
v.push_back(make_pair(a1,-1));
}
}
sort(v.begin(),v.end());
int cur = 0;
for(int j = 0;j < v.size();j++){
if(cur && sgn(v[j].first-pre[cur])){
ans[cur] += areaarc(v[j].first-pre[cur],c[i].r);
ans[cur] += 0.5*(Point(c[i].p.x+c[i].r*cos(pre[cur]),c[i].p.y+c[i].r*sin(pre[cur]))^Point(c[i].p.x+c[i].r*cos(v[j].first),c[i].p.y+c[i].r*sin(v[j].first)));
}
cur += v[j].second;
pre[cur] = v[j].first;
}
}
for(int i = 1;i < n;i++)
ans[i] -= ans[i+1];
}
};
三维几何
const double eps = 1e-8;
int sgn(double x){
if(fabs(x) < eps)return 0;
if(x < 0)return -1;
else return 1;
}
struct Point3{
double x,y,z;
Point3(double _x = 0,double _y = 0,double _z = 0){
x = _x;
y = _y;
z = _z;
}
void input(){
scanf("%lf%lf%lf",&x,&y,&z);
}
void output(){
scanf("%.2lf %.2lf %.2lf\n",x,y,z);
}
bool operator ==(const Point3 &b)const{
return sgn(x-b.x) == 0 && sgn(y-b.y) == 0 && sgn(z-b.z) == 0;
}
bool operator <(const Point3 &b)const{
return sgn(x-b.x)==0?(sgn(y-b.y)==0?sgn(z-b.z)<0:y<b.y):x<b.x;
}
double len(){
return sqrt(x*x+y*y+z*z);
}
double len2(){
return x*x+y*y+z*z;
}
double distance(const Point3 &b)const{
return sqrt((x-b.x)*(x-b.x)+(y-b.y)*(y-b.y)+(z-b.z)*(z-b.z));
}
Point3 operator -(const Point3 &b)const{
return Point3(x-b.x,y-b.y,z-b.z);
}
Point3 operator +(const Point3 &b)const{
return Point3(x+b.x,y+b.y,z+b.z);
}
Point3 operator *(const double &k)const{
return Point3(x*k,y*k,z*k);
}
Point3 operator /(const double &k)const{
return Point3(x/k,y/k,z/k);
}
//点乘
double operator *(const Point3 &b)const{
return x*b.x+y*b.y+z*b.z;
}
//叉乘
Point3 operator ^(const Point3 &b)const{
return Point3(y*b.z-z*b.y,z*b.x-x*b.z,x*b.y-y*b.x);
}
double rad(Point3 a,Point3 b){
Point3 p = (*this);
return acos( ( (a-p)*(b-p) )/ (a.distance(p)*b.distance(p)) );
}
//变换长度
Point3 trunc(double r){
double l = len();
if(!sgn(l))return *this;
r /= l;
return Point3(x*r,y*r,z*r);
}
};
struct Line3
{
Point3 s,e;
Line3(){}
Line3(Point3 _s,Point3 _e) {
s = _s;
e = _e;
}
bool operator ==(const Line3 v) {
return (s==v.s)&&(e==v.e);
}
void input() {
s.input();
e.input();
}
double length() {
return s.distance(e);
}
//点到直线距离
double dispointtoline(Point3 p) {
return ((e-s)^(p-s)).len()/s.distance(e);
}
//点到线段距离
double dispointtoseg(Point3 p) {
if(sgn((p-s)*(e-s)) < 0 || sgn((p-e)*(s-e)) < 0)
return min(p.distance(s),e.distance(p));
return dispointtoline(p);
}
//`返回点p在直线上的投影`
Point3 lineprog(Point3 p) {
return s + ( ((e-s)*((e-s)*(p-s)))/((e-s).len2()) );
}
//`p绕此向量逆时针arg角度`
Point3 rotate(Point3 p,double ang) {
if(sgn(((s-p)^(e-p)).len()) == 0)return p;
Point3 f1 = (e-s)^(p-s);
Point3 f2 = (e-s)^(f1);
double len = ((s-p)^(e-p)).len()/s.distance(e);
f1 = f1.trunc(len); f2 = f2.trunc(len);
Point3 h = p+f2;
Point3 pp = h+f1;
return h + ((p-h)*cos(ang)) + ((pp-h)*sin(ang));
}
//`点在直线上`
bool pointonseg(Point3 p) {
return sgn( ((s-p)^(e-p)).len() ) == 0 && sgn((s-p)*(e-p)) == 0;
}
};
struct Plane
{
Point3 a,b,c,o;//`平面上的三个点,以及法向量`
Plane(){}
Plane(Point3 _a,Point3 _b,Point3 _c) {
a = _a;
b = _b;
c = _c;
o = pvec();
}
Point3 pvec() {
return (b-a)^(c-a);
}
//`ax+by+cz+d = 0`
Plane(double _a,double _b,double _c,double _d) {
o = Point3(_a,_b,_c);
if(sgn(_a) != 0)
a = Point3((-_d-_c-_b)/_a,1,1);
else if(sgn(_b) != 0)
a = Point3(1,(-_d-_c-_a)/_b,1);
else if(sgn(_c) != 0)
a = Point3(1,1,(-_d-_a-_b)/_c);
}
//`点在平面上的判断`
bool pointonplane(Point3 p) {
return sgn((p-a)*o) == 0;
}
//`两平面夹角`
double angleplane(Plane f) {
return acos(o*f.o)/(o.len()*f.o.len());
}
//`平面和直线的交点,返回值是交点个数`
int crossline(Line3 u,Point3 &p) {
double x = o*(u.e-a);
double y = o*(u.s-a);
double d = x-y;
if(sgn(d) == 0)return 0;
p = ((u.s*x)-(u.e*y))/d;
return 1;
}
//`点到平面最近点(也就是投影)`
Point3 pointtoplane(Point3 p) {
Line3 u = Line3(p,p+o);
crossline(u,p);
return p;
}
//`平面和平面的交线`
int crossplane(Plane f,Line3 &u) {
Point3 oo = o^f.o;
Point3 v = o^oo;
double d = fabs(f.o*v);
if(sgn(d) == 0)return 0;
Point3 q = a + (v*(f.o*(f.a-a))/d);
u = Line3(q,q+oo);
return 1;
}
};
平面最近点对
const int MAXN = 100010;
const double eps = 1e-8;
const double INF = 1e20;
struct Point{
double x,y;
void input(){
scanf("%lf%lf",&x,&y);
}
};
double dist(Point a,Point b){
return sqrt((a.x-b.x)*(a.x-b.x) + (a.y-b.y)*(a.y-b.y));
}
Point p[MAXN];
Point tmpt[MAXN];
bool cmpx(Point a,Point b){
return a.x < b.x || (a.x == b.x && a.y < b.y);
}
bool cmpy(Point a,Point b){
return a.y < b.y || (a.y == b.y && a.x < b.x);
}
double Closest_Pair(int left,int right){
double d = INF;
if(left == right)return d;
if(left+1 == right)return dist(p[left],p[right]);
int mid = (left+right)/2;
double d1 = Closest_Pair(left,mid);
double d2 = Closest_Pair(mid+1,right);
d = min(d1,d2);
int cnt = 0;
for(int i = left;i <= right;i++){
if(fabs(p[mid].x - p[i].x) <= d)
tmpt[cnt++] = p[i];
}
sort(tmpt,tmpt+cnt,cmpy);
for(int i = 0;i < cnt;i++){
for(int j = i+1;j < cnt && tmpt[j].y - tmpt[i].y < d;j++)
d = min(d,dist(tmpt[i],tmpt[j]));
}
return d;
}
int main(){
int n;
while(scanf("%d",&n) == 1 && n){
for(int i = 0;i < n;i++)p[i].input();
sort(p,p+n,cmpx);
printf("%.2lf\n",Closest_Pair(0,n-1));
}
return 0;
}
三维凸包
例题:HDU - 4273
const double eps = 1e-8;
const int MAXN = 550;
int sgn(double x){
if(fabs(x) < eps)return 0;
if(x < 0)return -1;
else return 1;
}
struct Point3{
double x,y,z;
Point3(double _x = 0, double _y = 0, double _z = 0){
x = _x;
y = _y;
z = _z;
}
void input(){
scanf("%lf%lf%lf",&x,&y,&z);
}
bool operator ==(const Point3 &b)const{
return sgn(x-b.x) == 0 && sgn(y-b.y) == 0 && sgn(z-b.z) == 0;
}
double len(){
return sqrt(x*x+y*y+z*z);
}
double len2(){
return x*x+y*y+z*z;
}
double distance(const Point3 &b)const{
return sqrt((x-b.x)*(x-b.x)+(y-b.y)*(y-b.y)+(z-b.z)*(z-b.z));
}
Point3 operator -(const Point3 &b)const{
return Point3(x-b.x,y-b.y,z-b.z);
}
Point3 operator +(const Point3 &b)const{
return Point3(x+b.x,y+b.y,z+b.z);
}
Point3 operator *(const double &k)const{
return Point3(x*k,y*k,z*k);
}
Point3 operator /(const double &k)const{
return Point3(x/k,y/k,z/k);
}
//点乘
double operator *(const Point3 &b)const{
return x*b.x + y*b.y + z*b.z;
}
//叉乘
Point3 operator ^(const Point3 &b)const{
return Point3(y*b.z-z*b.y,z*b.x-x*b.z,x*b.y-y*b.x);
}
};
struct CH3D{
struct face{
//表示凸包一个面上的三个点的编号
int a,b,c;
//表示该面是否属于最终的凸包上的面
bool ok;
};
//初始顶点数
int n;
Point3 P[MAXN];
//凸包表面的三角形数
int num;
//凸包表面的三角形
face F[8*MAXN];
int g[MAXN][MAXN];
//叉乘
Point3 cross(const Point3 &a,const Point3 &b,const Point3 &c){
return (b-a)^(c-a);
}
//`三角形面积*2`
double area(Point3 a,Point3 b,Point3 c){
return ((b-a)^(c-a)).len();
}
//`四面体有向面积*6`
double volume(Point3 a,Point3 b,Point3 c,Point3 d){
return ((b-a)^(c-a))*(d-a);
}
//`正:点在面同向`
double dblcmp(Point3 &p,face &f){
Point3 p1 = P[f.b] - P[f.a];
Point3 p2 = P[f.c] - P[f.a];
Point3 p3 = p - P[f.a];
return (p1^p2)*p3;
}
void deal(int p,int a,int b){
int f = g[a][b];
face add;
if(F[f].ok){
if(dblcmp(P[p],F[f]) > eps)
dfs(p,f);
else {
add.a = b;
add.b = a;
add.c = p;
add.ok = true;
g[p][b] = g[a][p] = g[b][a] = num;
F[num++] = add;
}
}
}
//递归搜索所有应该从凸包内删除的面
void dfs(int p,int now){
F[now].ok = false;
deal(p,F[now].b,F[now].a);
deal(p,F[now].c,F[now].b);
deal(p,F[now].a,F[now].c);
}
bool same(int s,int t){
Point3 &a = P[F[s].a];
Point3 &b = P[F[s].b];
Point3 &c = P[F[s].c];
return fabs(volume(a,b,c,P[F[t].a])) < eps &&
fabs(volume(a,b,c,P[F[t].b])) < eps &&
fabs(volume(a,b,c,P[F[t].c])) < eps;
}
//构建三维凸包
void create(){
num = 0;
face add;
//***********************************
//此段是为了保证前四个点不共面
bool flag = true;
for(int i = 1;i < n;i++){
if(!(P[0] == P[i])){
swap(P[1],P[i]);
flag = false;
break;
}
}
if(flag)return;
flag = true;
for(int i = 2;i < n;i++){
if( ((P[1]-P[0])^(P[i]-P[0])).len() > eps ){
swap(P[2],P[i]);
flag = false;
break;
}
}
if(flag)return;
flag = true;
for(int i = 3;i < n;i++){
if(fabs( ((P[1]-P[0])^(P[2]-P[0]))*(P[i]-P[0]) ) > eps){
swap(P[3],P[i]);
flag = false;
break;
}
}
if(flag)return;
//**********************************
for(int i = 0;i < 4;i++){
add.a = (i+1)%4;
add.b = (i+2)%4;
add.c = (i+3)%4;
add.ok = true;
if(dblcmp(P[i],add) > 0)swap(add.b,add.c);
g[add.a][add.b] = g[add.b][add.c] = g[add.c][add.a] = num;
F[num++] = add;
}
for(int i = 4;i < n;i++)
for(int j = 0;j < num;j++)
if(F[j].ok && dblcmp(P[i],F[j]) > eps){
dfs(i,j);
break;
}
int tmp = num;
num = 0;
for(int i = 0;i < tmp;i++)
if(F[i].ok)
F[num++] = F[i];
}
//表面积
//`测试:HDU3528`
double area(){
double res = 0;
if(n == 3){
Point3 p = cross(P[0],P[1],P[2]);
return p.len()/2;
}
for(int i = 0;i < num;i++)
res += area(P[F[i].a],P[F[i].b],P[F[i].c]);
return res/2.0;
}
double volume(){
double res = 0;
Point3 tmp = Point3(0,0,0);
for(int i = 0;i < num;i++)
res += volume(tmp,P[F[i].a],P[F[i].b],P[F[i].c]);
return fabs(res/6);
}
//表面三角形个数
int triangle(){
return num;
}
//表面多边形个数
//`测试:HDU3662`
int polygon(){
int res = 0;
for(int i = 0;i < num;i++){
bool flag = true;
for(int j = 0;j < i;j++)
if(same(i,j)){
flag = 0;
break;
}
res += flag;
}
return res;
}
//重心
//`测试:HDU4273`
Point3 barycenter(){
Point3 ans = Point3(0,0,0);
Point3 o = Point3(0,0,0);
double all = 0;
for(int i = 0;i < num;i++){
double vol = volume(o,P[F[i].a],P[F[i].b],P[F[i].c]);
ans = ans + (((o+P[F[i].a]+P[F[i].b]+P[F[i].c])/4.0)*vol);
all += vol;
}
ans = ans/all;
return ans;
}
//点到面的距离
//`测试:HDU4273`
double ptoface(Point3 p,int i){
double tmp1 = fabs(volume(P[F[i].a],P[F[i].b],P[F[i].c],p));
double tmp2 = ((P[F[i].b]-P[F[i].a])^(P[F[i].c]-P[F[i].a])).len();
return tmp1/tmp2;
}
};
CH3D hull;
int main()
{
while(scanf("%d",&hull.n) == 1){
for(int i = 0;i < hull.n;i++)hull.P[i].input();
hull.create();
Point3 p = hull.barycenter();
double ans = 1e20;
for(int i = 0;i < hull.num;i++)
ans = min(ans,hull.ptoface(p,i));
printf("%.3lf\n",ans);
}
return 0;
}